ABMSCONFERENCE

Board certification, MOC, and surgical complications

Tim Xu, MD, MPP ABMS Visiting Scholar, 2016-2017

Co-authors: Ambar Mehta, MPH, Angela Park, Martin A. Makary, MD, MPH, and David W. Price, MD

> ACHIEVING IMPROVEMENT THROUGH ASSESSMENT AND LEARNING. TOGETHER.

September 25, 2017

Disclosures

- I'm currently an associate at McKinsey & Company and a recent graduate from the Johns Hopkins School of Medicine
- This presentation does not reflect the opinions of these organizations

We evaluated the impact of board certification and maintenance of certification (MOC) on complications after surgery in Medicare patients

Background

- Patients value board certification and MOC
- Physicians have raised concerns about the time and value of MOC
- Little research has examined the impact of board certification programs on patient outcomes, especially in surgery

Research questions

- What is the association between board certification and MOC and outcomes important to patients?
- How can these programs be leveraged to improve the quality of healthcare?

We analyzed the surgical outcomes of 1.9 million Medicare patients from 2009-2013

We analyzed the surgical outcomes of 1.9 million Medicare patients from 2009-2013

91% of surgeons were board certified; 99% of eligible surgeons participated in MOC

Board certification status of included surgeons (N=14,598)

% surgeons in each group

1 Among surgeons board certified for at least 10 years; defined as having MOC fulfilled at any point during 2009-2013 2 ABNS only started issuing time-limited certificates in 1999, so as of 2009, surgeons were still beginning MOC

91% of surgeons were board certified; 99% of eligible surgeons participated in MOC

Among surgeons board certified for at least 10 years; defined as having MOC fulfilled at any point during 2009-2013
 ABNS only started issuing time-limited certificates in 1999, so as of 2009, surgeons were still beginning MOC

Up to 2.5 fold differences in complication rates by surgeon

Variation in complication rates of outlier and exemplar surgeons

% by surgeon of mortality in hospital or admission within 30 days for a preventable surgical cause

Exemplar

Outlier

Key findings

- No association
 between board
 certification and
 exemplar status
- Board certified surgeons were **21%** less likely to be outliers
- Non-board certified
 surgeons performed
 14% of all procedures

Key findings

- No association between board certification and exemplar status
- Board certified surgeons were **21%** less likely to be outliers
- Non-board certified surgeons performed 14% of all procedures

No measurable association between MOC participation and complication rates after accounting for other surgeon factors¹

Regression odds ratios¹ (95% confidence interval) Not significant ■ P<0.05 Urologists **Orthopedic surgeons** Combined Univariable Multivariable **Multivariable** Univariable Univariable Multivariable 1.41 1.05 2.08 0.71 1.39 1.05 Exemplar (1.13 - 1.72)(1.12 - 1.76)(0.75 - 1.46)(0.99-4.36)(0.22 - 2.29)(0.75 - 1.46)0.94 1.17 0.85 1.39 1.06 1.23 Outlier (0.73 - 1.18)(0.84 - 1.62)(0.55 - 1.30)(0.87 - 1.30)(0.92 - 1.64)

Association between MOC and likelihood of being an outlier or exemplar

Possible explanations

- Lack of direct skills assessment in MOC
- Inadequate adjustment for experience
- Use of time-unlimited as a control group

Sensitivity analyses

- 5% cut-off for outlier and exemplar
- Volume of 50 cases minimum
- Linear regression

No measurable association between MOC participation and complication rates after accounting for other surgeon factors¹

Regression odds ratios¹ (95% confidence interval) Not significant P<0.05 Urologists **Orthopedic surgeons** Combined Multivariable : Univariable Multivariable Univariable Univariable Multivariable 1.05 2.08 0.71 1.05 (0.22 - 2.29)(0.75 - 1.46)(0.99-4.36)(0.75 - 1.46)0.94 1.17 0.85 1.39 1.06 1.23 Outlier (0.87 - 1.30)(0.73 - 1.18)(0.84 - 1.62)(0.55 - 1.30)(0.75 - 2.55)(0.92 - 1.64)

Association between MOC and likelihood of being an outlier or exemplar

Possible explanations

- Lack of direct skills assessment in MOC
- Inadequate adjustment for experience
- Use of time-unlimited as a control group

Sensitivity analyses

- 5% cut-off for outlier and exemplar
- Volume of 50 cases minimum
- Linear regression

No measurable association between MOC participation and complication rates after accounting for other surgeon factors¹

Regression	odds ratios ¹ (9	5% confidence i	nterval)		P<0.05	lot significant
	Orthopedic s	urgeons	Urologists		Combined	
	Univariable	Multivariable	Univariable	Multivariable	Univariable	Multivariable
Exemplar	1.41 (1.12-1.76)	1.05 (0.75-1.46)	2.08 (0.99-4.36)	0.71 (0.22-2.29)	1.39 (1.13-1.72)	1.05 (0.75-1.46)
Outlier	0.94 (0.73-1.18)	1.17 (0.84-1.62)	0.85 (0.55-1.30)	1.39 (0.75-2.55)	1.06 (0.87-1.30)	1.23 (0.92-1.64)

Association between MOC and likelihood of being an outlier or exemplar

Possible explanations

- Lack of direct skills assessment in MOC
- Inadequate adjustment for experience
- Use of time-unlimited as a control group

Sensitivity analyses

- 5% cut-off for outlier and exemplar
- Volume of 50 cases minimum
- Linear regression

Surgeon volume, years in practice, and hospital size were more strongly associated with outcomes

1 Models also adjusted for hospital profit status, rurality, and region within the US, which were not statistically significant

Surgeon volume, years in practice, and hospital size were more strongly associated with outcomes

1 Models also adjusted for hospital profit status, rurality, and region within the US, which were not statistically significant

We propose several opportunities to leverage board certification for quality improvement

	 Board certification is a marker of quality that can help identify outlier surgeons 				
Leveraging	 Analysis of patient outcomes may can complement more formal case review (e.g. ABOS) 				
anarytics	 Further work is needed to build analytic capabilities, e.g. use of registries (NSQIP) while noting the limitations of these data sets 				
Quality improvement opportunities	 Peer review and video coaching are potential opportunities to improve outcomes among surgeons identified to have higher complication rates 				
Evaluation of	 Boards can coordinate the development of actionable quality metrics as well as recertification questions linked to key drivers of complications 				
programs	 Continuing evaluation of BC and MOC programs is needed to increase their impact in improving the quality and value of healthcare 				

We propose several opportunities to leverage board certification for quality improvement

Leveraging analytics	 Board certification is a marker of quality that can help identify outlier surgeons
	 Analysis of patient outcomes may can complement more formal case review (e.g. ABOS)
	 Further work is needed to build analytic capabilities, e.g. use of registries (NSQIP) while noting the limitations of these data sets
Quality improvement opportunities	 Peer review and video coaching are potential opportunities to improve outcomes among surgeons identified to have higher complication rates
Evaluation of	 Boards can coordinate the development of actionable quality metrics as well as recertification questions linked to key drivers of complications
programs	Continuing evaluation of BC and MOC programs is peeded to increase their

We propose several opportunities to leverage board certification for quality improvement

programs	 Continuing evaluation of BC and MOC programs is needed to increase their impact in improving the quality and value of healthcare 				
Evaluation of	 Boards can coordinate the development of actionable quality metrics as well as recertification questions linked to key drivers of complications 				
Quality improvement opportunities	 Peer review and video coaching are potential opportunities to improve outcomes among surgeons identified to have higher complication rates 				
Leveraging analytics	 Further work is needed to build analytic capabilities, e.g. use of registries (NSQIP) while noting the limitations of these data sets 				
	 Analysis of patient outcomes may can complement more formal case review (e.g. ABOS) 				
	• Board certification is a marker of quality that can help identify outlier surgeons				

Acknowledgements

- **Grant funding** from the ABMS Visiting Scholars program
- **ABMS:** David Price, Suzanne Resnick, Tom Granatir, Mira Irons
- **Co-authors:** Ambar Mehta, MPH, Angela Park, Marty Makary, MD, MPH, David Price, MD

Questions?